

Exploration for Wave Propagation Around E Ground Loosening Using Discrete Element Method

地盤内ゆるみ検知のためのDEM弾性波伝播解析

The ground cave-in accident caused by shield tunnel excavation in Chofu, Japan in 2020 revealed that ground loosening and subsurface cavities potentially cause ground cave-ins even deep in the ground. Although groundpenetrating radar method has been utilized to detect them, its applicability is limited to the shallow ground about 1.5 m below the ground surface. This contribution is a fundamental study aimed at detecting loosening depth in the ground, with the goal of measuring dynamic waves from inside a tunnel. To understand wave propagation and particle-scale response around loosened sandy soil, this study adopts the discrete element method (DEM).

2020年に調布市で発生したシールドトンネル掘削に伴う地盤陥没事故は、大深度であっても地盤のゆるみや地下空 洞が地盤陥没を引き起こす可能性を明らかにした。空洞を検知するために地中レーダー法が実用化されているが、そ の適用範囲は地表から 1.5 m程度の浅い地盤に限られる. そこで本研究は、トンネル内部から地下深くの地盤内のゆ るみを検知するために、弾性波の伝播特性を理解することを目的とする。一連の個別要素法(DEM)数値解析を行 い, ゆるんだ砂地盤周りの粒子スケール応答を評価した.

1. Modelling approach

Using U-Tokyo Supercomputer (Wisteria/BDEC-01)

1) Particle generation

- Spherical particle

2) Air-pluviation process

- Hertz-Mindlin contact model

3) "Patchwork" process

- Dense + Loose ground model

2. Inter-particle contact forces

[Case Loosened –L]

- The vertical contact forces are predominant over the horizontal ones due to the effect of gravity.
- At the boundary between Dense and Loose, the horizontal forces are dominant in which soil pressure is exerted to support each other's ground.

0.15 0.2 0.3 0.5 0.55 x [m] 1.0e-2 Normal Force[N]

 $\frac{\Xi}{N}$ 0.1

[Case Loosened –S]

- Soil arching is generated over the loose area.

Young's modulus [GPa]	Poisson's ratio	Specific gravity	Diameter [mm]
71.6	0.23	2.65	1.4~2.2

3. Wave propagation simulations

The particles inside the region of the transmitter were excited in the Y-direction to generate elastic S-waves, with a single period of cosine wave form (double amplitude displacement: 10 nm; frequency: 1 kHz)

Excitation inside Dense area

- In model grounds with loosening, the decrease in energy as the wave passes through the loose area is indicative of lowpass filtering effect.
- The property of the transmission energy is also explained by the concept of acoustic impedance (ZI)

Concept	or acoustic in			
Time [ms]	Dense Only	Loosened -L	Loosened -S	
0.0016 (0.0011 for Dense Only)				
0.0020 (0.0013 for Dense Only)				Elastic wave propa
0.0024 (0.0016 for Dense Only)				
				Vibrate particles
1.0e-16	Kin	netic Energy [J]	0	in the Y-direction

Excitation inside Loose area

- In model grounds with loosening, residual energy around the bottom loose area can be observed.
- Especially in Case Loosened -S, the first traveling S-wave is transmitted, but the second is reflected at the Loose-Dense boundary.

For further information, contact below. Prof. Reiko Kuwano Bw-304, Institute of Industrial Science, the University of Tokyo TEL: +81-3-5452-6843 E-mail: kuwano@iis.u-tokyo.ac.jp

桑代和樹 Kazuki Kuwashiro (2024) 桑野研究室 東京大学 生產技術研究所 Bw-304 電話: 03-5452-6843

E-mail: kuwano@iis.u-tokyo.ac.jp

