

Development of Multi-Directional Elastic Wave Measurement System Using Disk-Shaped Piezoelectric Transducers

ディスクトランスデューサーを用いた多方向弾性波計測システムの開発

Overview

The elastic wave velocities and small strain stiffnesses of soils are essential parameters that are used in the design of foundations, tunnels, etc. Disk-shaped piezoelectric transducers (DTs) developed at IIS have been used for measuring elastic waves propagating through geomaterials. In this study, these transducers were modified to develop a system capable of automatic multi-directional elastic wave measurements in triaxial specimens. Changes in multi-directional elastic wave velocity of dry Toyoura sand during triaxial compression are presented. 桑野研究室では、ディスクトランスデューサー(DT)を用いて地盤材料を伝わる弾性波速度の計測が行われている。

桑野研究室では、ディスクトランスデューサー(DT)を用いて地盤材料を伝わる弾性波速度の計測が行われている。 本研究では、DTを用いて、三軸供試体で弾性波の多方向自動計測を行うシステムを開発した。このシステムを用いて、 乾燥豊浦砂の三軸圧縮中の弾性波速度の計測を行った結果を示す。

Multi-directional elastic wave measurement system

non-inversive

Vertical cross section Appearance of the specimen

✓ easy to seal

✓ Automated measurement of 3 S-waves and 2 P-waves in 10 seconds

- \checkmark $V_{\text{s,hh}}$ and $V_{\text{p,h}}$ decreased with increasing axial strain.
- \checkmark $V_{s,hv}$ and $V_{s,vh}$ exhibited peaks at phase transformation point (PTP) and subsequently decreased.
- \checkmark $V_{p,v}$ increased until around the peak of q, followed by a slight decrease with strain softening.

E-mail: kuwano@iis.u-tokyo.ac.jp

For further information, contact below.

Prof. Reiko Kuwano

Bw-304, Institute of Industrial Science, the University of Tokyo
TEL: +81-3-5452-6843

E-mail: kuwano@iis.u-tokyo.ac.jp

橋本拓幸 Hiroyuki HASHIMOTO (2025) 桑野研究室 東京大学 生産技術研究所 Bw-304 電話: 03-5452-6843